

(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belgaum) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bangalore- 560090

Department of Artificial Intelligence and Machine Learning

Academic Year: 2021-2022				Semester: IV
Course	Name:	Microcontroller	and	Course Code: 18CS44
Embedded	Systems			
Total Contact hours: 40				Credits:3
SEE Mark	s: 60 ; CI	E: 40		Total Marks: 100
Course Plan Author: G Soujanya			Date: 29.04.2022	

Course Prerequisites: Computer Organization

Course Objectives:

- Understand the fundamentals of ARM based systems, basic hardware components, selection methods and attributes of an embedded system.
- Program ARM controller using the various instructions
- Identify the applicability of the embedded system
- Comprehend the real time operating system used for the embedded system

Course Outcomes:

CO	Course Outcome	Blooms' Level
Number	At the end of the course, student should be able to	
CO1	Describe the architectural features and instructions of ARM	Understand, Apply
	Microcontroller	
CO2	Develop application for Programming skills using ARM	Understand, Apply
	microcontroller	
CO3	Interface external hardware devices such as Stepper Motor, DC	Understand, Apply
	Motor, DAC with ARM Microcontroller	
CO4	Able to explain about Embedded systems, Characteristics details and	Understand, Apply
	Implementation	
CO5	Illustrate the need of Real Time Operating System for embedded	Understand, Apply
	system applications	

(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belgaum) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bangalore- 560090

Department of Artificial Intelligence and Machine Learning

Program (Dutcomes and Program Specific Outcomes
PO, PSO	1.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of
	Solutions; 4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage;
	6.The Engineer and Society; 7.Environment and Sustainability; 8.Ethics;
	9.Individual and Teamwork; 10.Communication; 11.Project Management and
	Finance; 12.Life-long Learning;
	PSO1. Graduates will have the ability to adapt, contribute and innovate ideas in the field of Artificial Intelligence and Machine Learning;
	PSO2. To provide a concrete foundation and enrich their abilities to qualify for
	Employment, Higher studies and Research in various domains of Artificial
	Intelligence and Machine Learning such as Data Science, Computer Vision,
	Natural Language Processing with ethical values;
	PSO3 Graduates will acquire the practical proficiency with niche technologies and
	open source platforms and to become Entrepreneur in the domain of Artificial
	Intelligence and Machine Learning

Course		Program Outcomes													
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	0	2	2	2	0	3	2	0	2	3	3	3
CO2	3	3	3	1	3	3	3	2	3	2	2	1	3	3	3
CO3	3	2	3	3	3	3	3	2	3	2	3	2	3	3	3
CO4	2	0	2	0	2	2	-	0	3	2	2	1	3	3	1
CO5	3	0	2	1	2	3	3	0	3	2	0	2	2	3	1

CO – PO Mapping

(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belgaum) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bangalore- 560090

Department of Artificial Intelligence and Machine Learning

Course Content (Syllabus)

Module 1 : Microprocessors versus Microcontrollers, ARM Embedded Systems: The RISC design philosophy, The ARM Design Philosophy, Embedded System Hardware, Embedded System Software. ARM Processor Fundamentals: Registers, Current Program Status Register, Pipeline, Exceptions, Interrupts, and the Vector Table , Core Extensions Text book 1: Chapter 1 - 1.1 to 1.4, Chapter 2 - 2.1 to 2.5

Module 2 : Introduction to the ARM Instruction Set : Data Processing Instructions, Branch Instructions, Software Interrupt Instructions, Program Status Register Instructions, Coprocessor Instructions, Loading Constants ARM programming using Assembly language: Writing Assembly code, Profiling and cycle counting, instruction scheduling, Register Allocation, Conditional Execution, Looping Construct

Text book 1: Chapter 3:Sections 3.1 to 3.6 (Excluding 3.5.2), Chapter 6(Sections 6.1 to 6.6)

Module 3 : Embedded System Components: Embedded Vs General computing system, History of embedded systems, Classification of Embedded systems, Major applications areas of embedded systems, purpose of embedded systems Core of an Embedded System including all types of processor/controller, Memory, Sensors, Actuators, LED, 7 segment LED display, stepper motor, Keyboard, Push button switch, Communication Interface (onboard and external types), Embedded firmware, Other system components.

Text book 2:Chapter 1(Sections 1.2 to 1.6),Chapter 2(Sections 2.1 to 2.6) RBT: L1, L2

Module 4 : Embedded System Design Concepts: Characteristics and Quality Attributes of Embedded Systems, Operational quality attributes ,non-operational quality attributes, Embedded Systems-Application and Domain specific, Hardware Software Co-Design and Program Modelling, embedded firmware design and development

Text book 2: Chapter-3, Chapter-4, Chapter-7 (Sections 7.1, 7.2 only), Chapter-9 08

(Sections 9.1, 9.2, 9.3.1, 9.3.2 only)

Module 5 : RTOS and IDE for Embedded System Design: Operating System basics, Types of operating systems, Task, process and threads (Only POSIX Threads with an example program), Thread preemption, Multiprocessing and Multitasking, Task Communication (without any program), Task synchronization issues – Racing and Deadlock, Concept of Binary and counting semaphores (Mutex example without any program), How to choose an RTOS, Integration and testing of Embedded hardware and firmware, Embedded system Development Environment – Block diagram (excluding Keil), Disassembler / Decompiler, simulator, emulator and debugging techniques, target hardware debugging, boundary scan.

Text book 2: Chapter-10 (Sections 10.1, 10.2, 10.3, 10.4, 10.7, 10.8.1.1, 10.8.1.2, 10.8.2.2, 10.10 only), Chapter 12, Chapter-13 (block diagram before 13.1, 13.3, 13.4, 13.5, 13.6 only)

(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belgaum) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bangalore- 560090

Department of Artificial Intelligence and Machine Learning

Schedule of Instruction

Sl.no	Class	Module	Торіс	Reference	Course	Delivery
	no			(Book,	Outcome	mode
				Page no.)		
1	1	Module1:	Microprocessors versus	T1, 4	CO1	Lecture,
		Microprocesso	Microcontrollers, ARM Embedded			PPT,
		rs versus	Systems: The RISC design			Video
		Microcontrolle	philosophy,			
2	2	rs, ARM	The ARM Design Philosophy,	T1, 5	CO1	Lecture,
		Embedded				PPT
3	3	Systems:	Embedded System Hardware,	T1, 6	CO1	Lecture, PPT
4	4		Embedded System Software.	T1,12	CO1	Lecture, PPT
5	5		ARM Processor Fundamentals: Registers	T1,21	CO1	Lecture, PPT
6	6		Pipeline	T1,29	CO1	Lecture, PPT
7	7		Exceptions, Interrupts, and the Vector Table	T1,33	CO1	Lecture, PPT
8	8		Core Extensions	T1,34	CO1	Lecture, PPT
9	1	Module 2: Introduction to	Data Processing Instructions	T1,50	CO2	Lecture, PPT
10	2	the ARM	Branch Instructions	T1,58	CO2	Lecture, PPT
11	3	Instruction Set	Software Interrupt Instructions	T1,73	CO2	Lecture, PPT
12	4		Program Status Register Instructions	T1,76	CO2	Lecture, PPT
13	5		Coprocessor Instructions	T1,78	CO2	Lecture, PPT
14	6		Loading Constants ARM programming using Assembly language: Writing Assembly code	T1,158	CO2	Lecture, PPT
15	7		Profiling and cycle counting	T1,163	CO2	Lecture, PPT
16	8		instruction scheduling, Register Allocation	T1,171	CO2	Lecture, PPT
17	9		Conditional Execution, Looping Construct	T1,180	CO2	Lecture, PPT

SRI KRISHNA INSTITUTE OF TECHNOLOGY (Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belgaum) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bangalore- 560090

Department of Artificial Intelligence and Machine Learning

18	1	Module 3:	Embedded Vs General computing	T2,4	CO3	Lecture,
_		Embedded	system. History of embedded	2		PPT
		System	systems			
19	2	Components	Classification of Embedded	T2.7		Lecture.
	_	components	systems. Major applications areas	,,		PPT
			of embedded systems			
20	3		purpose of embedded systems	T2.8	CO3	Lecture.
	_		r - r - r	,-		PPT
21	4		Core of an Embedded System	T2,17	CO3	Lecture,
			including all types of			PPT
			processor/controller, Memory,			
			Sensors, Actuators			
22	5		LED, 7 segment LED	T2,37	CO3	Lecture,
			display Interface			PPT
23	6		stepper motor	T2,39	CO3	Lecture,
						PPT
24	7		Keyboard, Push button switch	T2,42	CO3	Lecture, PPT
25	8		Communication Interface	T2,45	CO3	Lecture,
			(onboard and external types)			PPT
26	9		Embedded firmware	T2,59	CO3	Lecture,
27	10		Other system components	T2 60	CO3	Lecture
_ /	10		Stiler System components	12,00	000	PPT
28	1	Module 4:	Characteristics and Quality	T2,73	CO4	Lecture,
		Embedded	Attributes of Embedded Systems			PPT
29	2	System Design	Operational quality attributes	T2,75	CO4	Lecture,
		Concepts:				PPT
30	3	-	Non-operational quality attributes	T2,77	CO4	Lecture
31	4		Embedded Systems-Application and Domain specific	T2,83	CO4	Lecture, PPT
32	5		Hardware Software Co-Design	T2.205	CO4	Lecture.
			6	,		PPT
33	6		Program Modelling	T2,214	CO4	Lecture,
34	7		embedded firmware design and	T2 302	CO4	TEI Lecture
54	'		development	12,302	0.04	PPT
37	1	Module 5:	Operating System basics	T2,382	CO5	Lecture,
		RTOS and IDE				PPT
38	2	for Embedded System Design	Types of operating systems,	T2,386	CO5	Lecture, PPT
39	3		Task, process and threads (Only	T2.390	CO5	Lecture.
	-		POSIX Threads with an example	,0,0		PPT
			program)			
40	4		Thread preemption	T2,392	CO5	Lecture,

(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belgaum) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bangalore- 560090

Department of Artificial Intelligence and Machine Learning

					PPT
41	5	Multiprocessing and Multitasking	T2,402	CO5	Lecture,
					PPT
42	6	Task Communication	T2,426	CO5	Lecture,
					PPT
43	7	Task synchronization issues –	T2,442	CO5	Lecture,
		Racing and Deadlock			PPT
44	8	Concept of Binary and counting	T2,448	CO5	Lecture,
		semaphores			PPT
45	9	Integration and testing of	T2,557	CO5	Lecture,
		Embedded hardware and firmware			PPT
46	10	Disassembler / Decompiler,	T2,597	CO5	Lecture,
		Simulator, Emulator and			PPT
		Debugging Techniques, Target			
		Hardware Debugging			

*L – Lecture, V- Videos or any other mode

-									
Textb	Textbooks								
T1	Andrew N Sloss, Dominic Symes and Chris Wright, ARM system developers guide, Elsevier,								
	Morgan Kaufman publishers, 2008.								
T2	Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education, Private Limited, 2								
	nd Edition								
Refer	ence books								
R1	Raghunandan. G.H, Microcontroller (ARM) and Embedded System, Cengage learning								
	Publication,2019								
R2	The Insider's Guide to the ARM7 Based Microcontrollers, Hitex Ltd.,1st edition, 2005.								
R3	Steve Furber, ARM System-on-Chip Architecture, Second Edition, Pearson, 2015								
R4	Raj Kamal, Embedded System, Tata McGraw-Hill Publishers, 2nd Edition, 2008								

7	Web links and Video Lectures (e-Resources):
1	https://tinyurl.com/47myh3pa
2	https://sites.google.com/skit.org.in/4thsemester/about-the-course

(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belgaum) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bangalore- 560090

Department of Artificial Intelligence and Machine Learning

Assess	Assessment Schedule:								
Sl.No.	Assessment type	Contents	СО	Duration In Hours	Marks	Date & Time			
1	CIE Test 1	M1, M2	CO1,C O2	1	30				
2	CIE Test 2	M3	CO3	1	30				
3	CIE Test 3	M4, M5	CO4 CO5	1	30				
4	Assignment 1	M1, M2	CO1 CO2		10				
5	Assignment 2	M3	CO3		10				
6	Seminar	M4, M5	CO4,		05				
0	Quiz	M4, M5	CO5		05				
6	Semester End Examination	M1, M2, M3, M4, M5	CO1 – CO5	3	60				

Faculty Incharge

DAC Chairman